
1

Giving Rust a chance 
for in-kernel codecs

Daniel Almeida
Consultant Software Engineer
Collabora



2

This talk is about codec 
hardware accelerators and their 
inherent safety issues



3

It is also about how we can fix 
this problem



4

Hardware codec accelerators
● Specialized hardware to speed up decoding / encoding

● They are usually faster and generate less heat

● Their use frees up the main CPU, but..

● We now need drivers and an API to communicate with 
userland 



5

Hardware codec accelerators
● With a CPU implementation, everything is in userspace

● With a hardware accelerator, there’s a userspace component

● And also a kernel component, which means a highly 
privileged execution context



6

Let’s look inside a video 
bitstream



7



8

Bitstream metadata
● Controls the decoding process,

● A change in one parameter changes how the hardware 
interprets the rest of the bitstream

● Is parsed from untrusted input

● Interpreted and fed to the device by the kernel



9

Current validation process
● Userspace programs may introduce their own checks

● Kernel has an extremely ad-hoc validation strategy

● If something breaks, we hope it’s before the kernel gets 
involved

● Otherwise, we hope that the device simply hangs



10

Note: if the device hangs, you 
will have to reboot the machine



11



12



13



14

Last year’s proposal:



15

Maybe let’s write a codec driver 
in Rust?



16

Why Rust?
● Sized arrays

● Runtime bound checks using get()

● Iterators instead of dangerous for-loops

● References (which are always valid) instead of pointers

● Ownership, lifetimes, destructors, etc...



17

Brief recap
● A driver would need a layer of bindings, i.e.: abstractions

● This layer of bindings did not please the maintainers

● Therefore, this approach was abandoned



18

Feedback from last year
● Who maintains what?

● This will slow down development in C

● This may break C code

● The community is overwhelmed



19

What if we could write Rust code 
without bindings?



20

We can do so by converting a 
few functions at a time



21

This would sidestep most of the 
issues raised last year!



22

● Generate machine code that can be called from C

● Make it so the linker can find it

● Can be used as an entry point to call other Rust code



23

● We don’t want this: _RNvNtCs1234_7mycrate3foo3bar
– So no generics,

– No closures

– No namespacing

– No methods, etc.



24

● We need this to be callable from C, hence “extern C”

● Rustc will give us the machine code for the symbol.

● That’s it really, the linker will happily comply.



25

● The public API is then rewritten as per above

● But we need a way to expose the new API to C somehow.

● Because...



26

● This works.

● But it is not a good idea.

● It can quickly get out of sync.

● Nasty bugs can creep if we are not careful.



27

No worries, there’s a tool



28

Cbindgen

● Cbindgen can automatically generate a C header
– Keeps things in sync

– Ensure proper type layout and ABI

● Avoids link errors and/or subtle bugs

● Maintained by Mozilla



29

Cbindgen

● If a function takes arguments, cbindgen will generate 
equivalent C structs

● This works because of #[repr(C)]



30

Summary

● Convert self-contained components into Rust

● Ask rustc to generate the machine code
● Annotate the public API so that it’s callable from C

● Automatically generate a header file using cbindgen
● #include the header in C code



31

#include the header, that’s it.



32

Potential targets
● This type of conversion works best when:

– There is a self-contained component

– That exposes a small public API

● For video4linux, this means:

– Codec libraries

– Codec parsers



33

Codec libraries
● Codec algorithms that run on the CPU

● Results are fed back to the hardware

● Abstracted so drivers can rely on a single implementation

● Very self-contained



34

Rewriting the VP9 library
● Two drivers were converted 

● There is a testing tool

● We got the exact same score when running the tool

● Relatively pain-free process



35

New proposals:



36

Proposals
● Merge the code

● Gate it behind a KCONFIG

● Users get the C implementation by default

● Run the Rust implementation on a CI

● Eventually deprecate the C implementation



37

Compared to last year
● Overall, a less ambitious approach

● Less inconvenience to maintainers

● The Rust code can be used by future Rust drivers, if any



38

Fixing the metadata handling 
should be good enough for now



39

Feedback
● Provide examples of actual crashes that are fixed by Rust

● Measure any performance impacts

● Enable the Rust support in media-ci

● Use media-ci to continuously test the Rust code

● Merge the code in staging/media



40

Performance
● There should be no overhead in using this approach

● This means that the #[no_mangle], extern “C” stuff is free

● The added checks are not free, of course

● Programming the HW is *by far* not the bottleneck



41

Hopefully we can use this 
approach for stateless encoders 
once they are introduced



42

Thoughts?



43

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

