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This talk is about codec 
hardware accelerators and their 
inherent safety issues
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It is also about how we can fix 
this problem
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Hardware codec accelerators
● Specialized hardware to speed up decoding / encoding

● They are usually faster and generate less heat

● Their use frees up the main CPU, but..

● We now need drivers and an API to communicate with 
userland 
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Hardware codec accelerators
● With a CPU implementation, everything is in userspace

● With a hardware accelerator, there’s a userspace component

● And also a kernel component, which means a highly 
privileged execution context
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Let’s look inside a video 
bitstream
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Bitstream metadata
● Controls the decoding process,

● A change in one parameter changes how the hardware 
interprets the rest of the bitstream

● Is parsed from untrusted input

● Interpreted and fed to the device by the kernel
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Current validation process
● Userspace programs may introduce their own checks

● Kernel has an extremely ad-hoc validation strategy

● If something breaks, we hope it’s before the kernel gets 
involved

● Otherwise, we hope that the device simply hangs
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Note: if the device hangs, you 
will have to reboot the machine
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Last year’s proposal:
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Maybe let’s write a codec driver 
in Rust?
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Why Rust?
● Sized arrays

● Runtime bound checks using get()

● Iterators instead of dangerous for-loops

● References (which are always valid) instead of pointers

● Ownership, lifetimes, destructors, etc...
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Brief recap
● A driver would need a layer of bindings, i.e.: abstractions

● This layer of bindings did not please the maintainers

● Therefore, this approach was abandoned
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Feedback from last year
● Who maintains what?

● This will slow down development in C

● This may break C code

● The community is overwhelmed
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What if we could write Rust code 
without bindings?
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We can do so by converting a 
few functions at a time
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This would sidestep most of the 
issues raised last year!
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● Generate machine code that can be called from C

● Make it so the linker can find it

● Can be used as an entry point to call other Rust code
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● We don’t want this: _RNvNtCs1234_7mycrate3foo3bar
– So no generics,

– No closures

– No namespacing

– No methods, etc.
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● We need this to be callable from C, hence “extern C”

● Rustc will give us the machine code for the symbol.

● That’s it really, the linker will happily comply.
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● The public API is then rewritten as per above

● But we need a way to expose the new API to C somehow.

● Because...
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● This works.

● But it is not a good idea.

● It can quickly get out of sync.

● Nasty bugs can creep if we are not careful.
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No worries, there’s a tool
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Cbindgen

● Cbindgen can automatically generate a C header
– Keeps things in sync

– Ensure proper type layout and ABI

● Avoids link errors and/or subtle bugs

● Maintained by Mozilla
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Cbindgen

● If a function takes arguments, cbindgen will generate 
equivalent C structs

● This works because of #[repr(C)]
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Summary

● Convert self-contained components into Rust

● Ask rustc to generate the machine code
● Annotate the public API so that it’s callable from C

● Automatically generate a header file using cbindgen
● #include the header in C code
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#include the header, that’s it.



32

Potential targets
● This type of conversion works best when:

– There is a self-contained component

– That exposes a small public API

● For video4linux, this means:

– Codec libraries

– Codec parsers
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Codec libraries
● Codec algorithms that run on the CPU

● Results are fed back to the hardware

● Abstracted so drivers can rely on a single implementation

● Very self-contained
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Rewriting the VP9 library
● Two drivers were converted 

● There is a testing tool

● We got the exact same score when running the tool

● Relatively pain-free process
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New proposals:



36

Proposals
● Merge the code

● Gate it behind a KCONFIG

● Users get the C implementation by default

● Run the Rust implementation on a CI

● Eventually deprecate the C implementation
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Compared to last year
● Overall, a less ambitious approach

● Less inconvenience to maintainers

● The Rust code can be used by future Rust drivers, if any



38

Fixing the metadata handling 
should be good enough for now
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Feedback
● Provide examples of actual crashes that are fixed by Rust

● Measure any performance impacts

● Enable the Rust support in media-ci

● Use media-ci to continuously test the Rust code

● Merge the code in staging/media
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Performance
● There should be no overhead in using this approach

● This means that the #[no_mangle], extern “C” stuff is free

● The added checks are not free, of course

● Programming the HW is *by far* not the bottleneck
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Hopefully we can use this 
approach for stateless encoders 
once they are introduced
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Thoughts?
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Thank you!
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